
Education

Chapter 11: Genome-Wide Association Studies
William S. Bush1*, Jason H. Moore2

1 Department of Biomedical Informatics, Center for Human Genetics Research, Vanderbilt University Medical School, Nashville, Tennessee, United States of America,

2 Departments of Genetics and Community Family Medicine, Institute for Quantitative Biomedical Sciences, Dartmouth Medical School, Lebanon, New Hampshire, United

States of America

Abstract: Genome-wide associa-
tion studies (GWAS) have evolved
over the last ten years into a
powerful tool for investigating the
genetic architecture of human dis-
ease. In this work, we review the
key concepts underlying GWAS,
including the architecture of com-
mon diseases, the structure of
common human genetic variation,
technologies for capturing genetic
information, study designs, and the
statistical methods used for data
analysis. We also look forward to
the future beyond GWAS.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for
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1. Important Questions in
Human Genetics

A central goal of human genetics is to

identify genetic risk factors for common,

complex diseases such as schizophrenia

and type II diabetes, and for rare Mende-

lian diseases such as cystic fibrosis and

sickle cell anemia. There are many

different technologies, study designs and

analytical tools for identifying genetic risk

factors. We will focus here on the genome-

wide association study or GWAS that

measures and analyzes DNA sequence

variations from across the human genome

in an effort to identify genetic risk factors

for diseases that are common in the

population. The ultimate goal of GWAS

is to use genetic risk factors to make

predictions about who is at risk and to

identify the biological underpinnings of

disease susceptibility for developing new

prevention and treatment strategies. One

of the early successes of GWAS was the

identification of the Complement Factor H

gene as a major risk factor for age-related

macular degeneration or AMD [1–3]. Not

only were DNA sequence variations in this

gene associated with AMD but the bio-

logical basis for the effect was demonstrat-

ed. Understanding the biological basis of

genetic effects will play an important role in

developing new pharmacologic therapies.

While understanding the complexity of

human health and disease is an important

objective, it is not the only focus of human

genetics. Accordingly, one of the most

successful applications of GWAS has been

in the area of pharmacology. Pharmaco-

genetics has the goal of identifying DNA

sequence variations that are associated

with drug metabolism and efficacy as well

as adverse effects. For example, warfarin is

a blood-thinning drug that helps prevent

blood clots in patients. Determining the

appropriate dose for each patient is

important and believed to be partly

controlled by genes. A recent GWAS

revealed DNA sequence variations in

several genes that have a large influence

on warfarin dosing [4]. These results, and

more recent validation studies, have led to

genetic tests for warfarin dosing that can

be used in a clinical setting. This type of

genetic test has given rise to a new field

called personalized medicine that aims to

tailor healthcare to individual patients

based on their genetic background and

other biological features. The widespread

availability of low-cost technology for

measuring an individual’s genetic back-

ground has been harnessed by businesses

that are now marketing genetic testing

directly to the consumer. Genome-wide

association studies, for better or for worse,

have ushered in the exciting era of

personalized medicine and personal ge-

netic testing. The goal of this chapter is to

introduce and review GWAS technology,

study design and analytical strategies as an

important example of translational bioin-

formatics. We focus here on the application

of GWAS to common diseases that have a

complex multifactorial etiology.

2. Concepts Underlying the
Study Design

2.1 Single Nucleotide
Polymorphisms

The modern unit of genetic variation is

the single nucleotide polymorphism or SNP.

SNPs are single base-pair changes in the

DNA sequence that occur with high

frequency in the human genome [5]. For

the purposes of genetic studies, SNPs are

typically used as markers of a genomic

region, with the large majority of them

having a minimal impact on biological

systems. SNPs can have functional conse-

quences, however, causing amino acid

changes, changes to mRNA transcript

stability, and changes to transcription

factor binding affinity [6]. SNPs are by

far the most abundant form of genetic

variation in the human genome.

SNPs are notably a type of common

genetic variation; many SNPs are present

in a large proportion of human popula-

tions [7]. SNPs typically have two alleles,

meaning within a population there are

two commonly occurring base-pair pos-

sibilities for a SNP location. The fre-

quency of a SNP is given in terms of the

minor allele frequency or the frequency of

the less common allele. For example, a

SNP with a minor allele (G) frequency of

0.40 implies that 40% of a population

has the G allele versus the more common

allele (the major allele), which is found in

60% of the population.
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Commonly occurring SNPs lie in stark

contrast to genetic variants that are

implicated in more rare genetic disorders,

such as cystic fibrosis [8]. These conditions

are largely caused by extremely rare

genetic variants that ultimately induce a

detrimental change to protein function,

which leads to the disease state. Variants

with such low frequency in the population

are sometimes referred to as mutations,

though they can be structurally equivalent

to SNPs - single base-pair changes in the

DNA sequence. In the genetics literature,

the term SNP is generally applied to

common single base-pair changes, and the

term mutation is applied to rare genetic

variants.

2.2 Failures of Linkage for Complex
Disease

Cystic fibrosis (and most rare genetic

disorders) can be caused by multiple

different genetic variants within a single

gene. Because the effect of the genetic

variants is so strong, cystic fibrosis follows

an autosomal dominant inheritance pat-

tern in families with the disorder. One of

the major successes of human genetics was

the identification of multiple mutations in

the CFTR gene as the cause of cystic

fibrosis [8]. This was achieved by geno-

typing families affected by cystic fibrosis

using a collection of genetic markers across

the genome, and examining how those

genetic markers segregate with the disease

across multiple families. This technique,

called linkage analysis, was subsequently

applied successfully to identify genetic

variants that contribute to rare disorders

like Huntington disease [9]. When applied

to more common disorders, like heart

disease or various forms of cancer, linkage

analysis has not fared as well. This implies

the genetic mechanisms that influence

common disorders are different from those

that cause rare disorders [10].

2.3 Common Disease Common
Variant Hypothesis

The idea that common diseases have a

different underlying genetic architecture

than rare disorders, coupled with the

discovery of several susceptibility variants

for common disease with high minor allele

frequency (including alleles in the apolipo-

protein E or APOE gene for Alzheimer’s

disease [11] and PPARg gene in type II

diabetes [12]), led to the development of

the common disease/common variant (CD/CV)

hypothesis [13].

This hypothesis states simply that com-

mon disorders are likely influenced by

genetic variation that is also common in

the population. There are several key

ramifications of this for the study of

complex disease. First, if common genetic

variants influence disease, the effect size

(or penetrance) for any one variant must

be small relative to that found for rare

disorders. For example, if a SNP with 40%

frequency in the population causes a

highly deleterious amino acid substitution

that directly leads to a disease phenotype,

nearly 40% of the population would have

that phenotype. Thus, the allele frequency

and the population prevalence are com-

pletely correlated. If, however, that same

SNP caused a small change in gene

expression that alters risk for a disease by

some small amount, the prevalence of the

disease and the influential allele would be

only slightly correlated. As such, common

variants almost by definition cannot have

high penetrance.

Secondly, if common alleles have small

genetic effects (low penetrance), but com-

mon disorders show heritability (inheri-

tance in families), then multiple common

alleles must influence disease susceptibility.

For example, twin studies might estimate

the heritability of a common disease to be

40%, that is, 40% of the total variance in

disease risk is due to genetic factors. If the

allele of a single SNP incurs only a small

degree of disease risk, that SNP only

explains a small proportion of the total

variance due to genetic factors. As such,

the total genetic risk due to common

genetic variation must be spread across

multiple genetic factors. These two points

suggest that traditional family-based ge-

netic studies are not likely to be successful

for complex diseases, prompting a shift

toward population-based studies.

The frequency with which an allele

occurs in the population and the risk

incurred by that allele for complex diseases

are key components to consider when

planning a genetic study, impacting the

technology needed to gather genetic

information and the sample size needed

to discover statistically significant genetic

effects. The spectrum of potential genetic

effects is sometimes visualized and parti-

tioned by effect size and allele frequency

(figure 1). Genetic effects in the upper right

are more amenable to smaller family-

based studies and linkage analysis, and

may require genotyping relatively few

genetic markers. Effects in the lower right

are typical of findings from GWAS,

requiring large sample sizes and a large

panel of genetic markers. Effects in the

upper right, most notably CFH, have been

identified using both linkage analysis and

GWAS. Effects in the lower left are

perhaps the most difficult challenge, re-

quiring genomic sequencing of large

samples to associate rare variants to

disease.

Over the last five years, the common

disease/common variant hypothesis has

been tested for a variety of common

diseases, and while much of the heritability

for these conditions is not yet explained,

common alleles certainly play a role in

susceptibility. The National Human Ge-

nome Institute GWAS catalog (http://

www.genome.gov/gwastudies) lists over

3,600 SNPs identified for common diseas-

es or traits, and in general, common

diseases have multiple susceptibility alleles,

each with small effect sizes (typically

increasing disease risk between 1.2–2

times the population risk) [14]. From these

results we can say that for most common

diseases, the CD/CV hypothesis is true,

though it should not be assumed that the

entire genetic component of any common

disease is due to common alleles only.

3. Capturing Common Variation

3.1 The Human Haplotype Map
Project

To test the common disease/common

variant hypothesis for a phenotype, a

systematic approach is needed to interro-

gate much of the common variation in the

human genome. First, the location and

density of commonly occurring SNPs is

needed to identify the genomic regions

and individual sites that must be examined

by genetic studies. Secondly, population-

specific differences in genetic variation

must be cataloged so that studies of

phenotypes in different populations can

be conducted with the proper design.

Finally, correlations among common ge-

netic variants must be determined so that

genetic studies do not collect redundant

information. The International HapMap

Project was designed to identify variation
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across the genome and to characterize

correlations among variants.

The International HapMap Project

used a variety of sequencing techniques

to discover and catalog SNPs in European

descent populations, the Yoruba popula-

tion of African origin, Han Chinese

individuals from Beijing, and Japanese

individuals from Tokyo [15,16]. The

project has since been expanded to include

11 human populations, with genotypes for

1.6 million SNPs [7]. HapMap genotype

data allowed the examination of linkage

disequilibrium.

3.2 Linkage Disequilibrium
Linkage disequilibrium (LD) is a prop-

erty of SNPs on a contiguous stretch of

genomic sequence that describes the

degree to which an allele of one SNP is

inherited or correlated with an allele of

another SNP within a population. The

term linkage disequilibrium was coined by

population geneticists in an attempt to

mathematically describe changes in ge-

netic variation within a population over

time. It is related to the concept of

chromosomal linkage, where two markers on

a chromosome remain physically joined

on a chromosome through generations of

a family. In figure 2, two founder

chromosomes are shown (one in blue

and one in orange). Recombination

events within a family from generation

to generation break apart chromosomal

segments. This effect is amplified through

generations, and in a population of fixed

size undergoing random mating, repeated

random recombination events will break

apart segments of contiguous chromo-

some (containing linked alleles) until

eventually all alleles in the population

are in linkage equilibrium or are indepen-

dent. Thus, linkage between markers on a

population scale is referred to as linkage

disequilibrium.

The rate of LD decay is dependent on

multiple factors, including the population

size, the number of founding chromo-

somes in the population, and the number

of generations for which the population

has existed. As such, different human sub-

populations have different degrees and

patterns of LD. African-descent popula-

tions are the most ancestral and have

smaller regions of LD due to the accumu-

lation of more recombination events in

that group. European-descent and Asian-

descent populations were created by

founder events (a sampling of chromo-

somes from the African population), which

altered the number of founding chromo-

somes, the population size, and the

generational age of the population. These

populations on average have larger regions

of LD than African-descent groups.

Many measures of LD have been

proposed [17], though all are ultimately

related to the difference between the

observed frequency of co-occurrence for

two alleles (i.e. a two-marker haplotype)

and the frequency expected if the two

markers are independent. The two com-

monly used measures of linkage disequi-

librium are D’ and r2 [15,17] shown in

equations 1 and 2. In these equations, p12

is the frequency of the ab haplotype, p1: is

Figure 1. Spectrum of Disease Allele Effects. Disease associations are often conceptualized in two dimensions: allele frequency and effect size.
Highly penetrant alleles for Mendelian disorders are extremely rare with large effect sizes (upper left), while most GWAS findings are associations of
common SNPs with small effect sizes (lower right). The bulk of discovered genetic associations lie on the diagonal denoted by the dashed lines.
doi:10.1371/journal.pcbi.1002822.g001
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the frequency of the a allele, and p2: is the

frequency of the b allele.

D0~

pABpab{pAbpaB

min(pApb,papB)
if pABpab{pAbpaBw0

pABpab{pAbpaB

min(pApB,papb)
if pABpab{pAbpaBv0

8>><
>>:

9>>=
>>;
ð1Þ

r2~
(pABpab{pAbpaB)2

pApBpapb

ð2Þ

D’ is a population genetics measure that is

related to recombination events between

markers and is scaled between 0 and 1. A

D’ value of 0 indicates complete linkage

equilibrium, which implies frequent re-

combination between the two markers and

statistical independence under principles

of Hardy-Weinberg equilibrium. A D’ of 1

indicates complete LD, indicating no

recombination between the two markers

within the population. For the purposes of

genetic analysis, LD is generally reported

in terms of r2, a statistical measure of

correlation. High r2 values indicate that

two SNPs convey similar information, as

one allele of the first SNP is often observed

with one allele of the second SNP, so only

one of the two SNPs needs to be

genotyped to capture the allelic variation.

There are dependencies between these

two statistics; r2 is sensitive to the allele

frequencies of the tow markers, and can

only be high in regions of high D’.
One often forgotten issue associated

with LD measures is that current technol-

ogy does not allow direct measurement of

haplotype frequencies from a sample

because each SNP is genotyped indepen-

dently and the phase or chromosome of

origin for each allele is unknown. Many

well-developed and documented methods

for inferring haplotype phase and estimat-

ing the subsequent two-marker haplotype

frequencies exist, and generally lead to

reasonable results [18].

SNPs that are selected specifically to

capture the variation at nearby sites in the

genome are called tag SNPs because alleles

for these SNPs tag the surrounding stretch

of LD. As noted before, patterns of LD are

population specific and as such, tag SNPs

selected for one population may not work

well for a different population. LD is

exploited to optimize genetic studies,

preventing genotyping SNPs that provide

redundant information. Based on analy-

sis of data from the HapMap project,

.80% of commonly occurring SNPs in

European descent populations can be

captured using a subset of 500,000 to one

million SNPs scattered across the ge-

nome [19].

3.3 Indirect Association
The presence of LD creates two possible

positive outcomes from a genetic associa-

tion study. In the first outcome, the SNP

influencing a biological system that ulti-

mately leads to the phenotype is directly

genotyped in the study and found to be

statistically associated with the trait. This is

referred to as a direct association, and the

genotyped SNP is sometimes referred to as

the functional SNP. The second possibility is

that the influential SNP is not directly

typed, but instead a tag SNP in high LD

with the influential SNP is typed and

statistically associated to the phenotype

(figure 3). This is referred to as an indirect

association [10]. Because of these two

possibilities, a significant SNP association

from a GWAS should not be assumed as

the causal variant and may require

Figure 2. Linkage and Linkage Disequilibrium. Within a family, linkage occurs when two genetic markers (points on a chromosome) remain
linked on a chromosome rather than being broken apart by recombination events during meiosis, shown as red lines. In a population, contiguous
stretches of founder chromosomes from the initial generation are sequentially reduced in size by recombination events. Over time, a pair of markers
or points on a chromosome in the population move from linkage disequilibrium to linkage equilibrium, as recombination events eventually occur
between every possible point on the chromosome.
doi:10.1371/journal.pcbi.1002822.g002
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additional studies to map the precise

location of the influential SNP.

Conceptually, the end result of GWAS

under the common disease/common var-

iant hypothesis is that a panel of 500,000

to one million markers will identify

common SNPs that are associated to

common phenotypes. To conduct such a

study practically requires a genotyping

technology that can accurately capture

the alleles of 500,000 to one million SNPs

for each individual in a study in a cost-

effective manner.

4. Genotyping Technologies

Genome-wide association studies were

made possible by the availability of chip-

based microarray technology for assaying

one million or more SNPs. Two primary

platforms have been used for most GWAS.

These include products from Illumina

(San Diego, CA) and Affymetrix (Santa

Clara, CA). These two competing tech-

nologies have been recently reviewed [20]

and offer different approaches to measure

SNP variation. For example, the Affyme-

trix platform prints short DNA sequences

as a spot on the chip that recognizes a

specific SNP allele. Alleles (i.e. nucleotides)

are detected by differential hybridization

of the sample DNA. Illumina on the other

hand uses a bead-based technology with

slightly longer DNA sequences to detect

alleles. The Illumina chips are more

expensive to make but provide better

specificity.

Aside from the technology, another

important consideration is the SNPs that

each platform has selected for assay. This

can be important depending on the

specific human population being studied.

For example, it is important to use a chip

that has more SNPs with better overall

genomic coverage for a study of Africans

than Europeans. This is because African

genomes have had more time to recom-

bine and therefore have less LD between

alleles at different SNPs. More SNPs are

needed to capture the variation across the

African genome.

It is important to note that the technol-

ogy for measuring genomic variation is

changing rapidly. Chip-based genotyping

platforms such as those briefly mentioned

above will likely be replaced over the next

few years with inexpensive new technolo-

gies for sequencing the entire genome.

These next-generation sequencing meth-

ods will provide all the DNA sequence

variation in the genome. It is time now to

retool for this new onslaught of data.

5. Study Design

Regardless of assumptions about the

genetic model of a trait, or the technology

used to assess genetic variation, no genetic

study will have meaningful results without

a thoughtful approach to characterize the

phenotype of interest. When embarking

on a genetic study, the initial focus should

be on identifying precisely what quantity or

trait genetic variation influences.

5.1 Case Control versus Quantitative
Designs

There are two primary classes of

phenotypes: categorical (often binary

case/control) or quantitative. From the

statistical perspective, quantitative traits

are preferred because they improve power

to detect a genetic effect, and often have a

more interpretable outcome. For some

disease traits of interest, quantitative

disease risk factors have already been

identified. High-density lipoprotein

(HDL) and low-density lipoprotein (LDL)

cholesterol levels are strong predictors of

heart disease, and so genetic studies of

heart disease outcomes can be conducted

by examining these levels as a quantitative

trait. Assays for HDL and LDL levels,

being already useful for clinical practice,

are precise and ubiquitous measurements

that are easy to obtain. Genetic variants

that influence these levels have a clear

interpretation – for example, a unit

change in LDL level per allele or by

genotype class. With an easily measurable

ubiquitous quantitative trait, GWAS of

blood lipids have been conducted in

numerous cohort studies. Their results

were also easily combined to conduct an

extremely well-powered massive meta-

analysis, which revealed 95 loci associated

to lipid traits in more than 100,000 people

[21]. Here, HDL and LDL may be the

primary traits of interest or can be

considered intermediate quantitative traits

or endophenotypes for cardiovascular

disease.

Other disease traits do not have well-

established quantitative measures. In these

circumstances, individuals are usually clas-

sified as either affected or unaffected – a

binary categorical variable. Consider the

vast difference in measurement error

associated with classifying individuals as

either ‘‘case’’ or ‘‘control’’ versus precisely

measuring a quantitative trait. For exam-

ple, multiple sclerosis is a complex clinical

phenotype that is often diagnosed over a

long period of time by ruling out other

possible conditions. However, despite the

‘‘loose’’ classification of case and control,

GWAS of multiple sclerosis have been

enormously successful, implicating more

than 10 new genes for the disorder [22].

So while quantitative outcomes are pre-

ferred, they are not required for a

successful study.

5.2 Standardized Phenotype Criteria
A major component of the success with

multiple sclerosis and other well-conduct-

ed case/control studies is the definition of

rigorous phenotype criteria, usually pre-

sented as rule list based on clinical

variables. Multiple sclerosis studies often

use the McDonald criteria for establishing

case/control status and defining clinical

subtypes [23]. Standardized methods like

the McDonald criteria establish a concise,

evidence-based approach that can be

uniformly applied by multiple diagnosing

clinicians to ensure that consistent pheno-

Figure 3. Indirect Association. Genotyped SNPs often lie in a region of high linkage disequilibrium with an influential allele. The genotyped SNP
will be statistically associated with disease as a surrogate for the disease SNP through an indirect association.
doi:10.1371/journal.pcbi.1002822.g003
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type definitions are used for a genetic

study.

Standardized phenotype rules are par-

ticularly critical for multi-center studies

to prevent introducing a site-based effect

into the study. And even when estab-

lished phenotype criteria are used, there

may be variability among clinicians in

how those criteria are used to assign

case/control status. Furthermore, some

quantitative traits are susceptible to bias

in measurement. For example, with

cataract severity lens photographs are

used to assign cases to one of three types

of lens opacity. In situations where there

may be disagreement among clinicians, a

subset of study records is often examined

by clinicians at multiple centers to assess

interrater agreement as a measure of

phenotyping consistency [24]. High in-

terrater agreement means that phenotype

rules are being consistently applied across

multiple sites, whereas low agreement

suggests that criteria are not uniformly

interpreted or applied, and may indicate

a need to establish more narrow pheno-

type criteria.

5.3 Phenotype Extraction from
Electronic Medical Records

The last few years of genetic research

has seen the growth of large clinical bio-

repositories that are linked to electronic

medical records (EMRs) [25]. The devel-

opment of these resources will certainly

advance the state of human genetics

research and foster integration of genetic

information into clinical practice. From a

study design perspective, identifying phe-

notypes from EMRs can be challenging.

Electronic medical records were estab-

lished for clinical care and administrative

purposes – not for research. As such,

idiosyncrasies arise due to billing practices

and other logistical reasons, and great care

must be taken not to introduce biases into

a genetic study.

The established methodology for con-

ducting ‘‘electronic phenotyping’’ is to

devise an initial selection algorithm

(using structured EMR fields, such as

billing codes, or text mining procedures

on unstructured text), which identifies a

record subset from the bio-repository. In

cases where free text is parsed, natural

language processing (NLP) is used in

conjunction with a controlled vocabulary

such as the Unified Medical Language

System (UMLS) to relate text to more

structured and uniform medical con-

cepts. In some instances, billing codes

alone may be sufficient to accurately

identify individuals with a particular

phenotype, but often combinations of

billing and procedure codes, along with

free text are necessary. Because every

medical center has its own set of policies,

care providers, and health insurance

providers, some algorithms developed in

one clinical setting may not work as well

in another.

Once a manageable subset of records is

obtained by an algorithm, the accuracy of

the results is examined by clinicians or

other phenotype experts as gold-standard

for comparison. The positive predictive

value (PPV) of the initial algorithm is

assessed, and based on feedback from case

reviewers, the selection algorithm is re-

fined. This process of case-review followed

by algorithmic refinement is continued

until the desired PPV is reached.

This approach has been validated by

replicating established genotype-pheno-

type relationships using EMR-derived

phenotypes [16], and has been applied to

multiple clinical and pharmacogenomic

conditions [26–28].

6. Association Test
6.1 Single Locus Analysis

When a well-defined phenotype has

been selected for a study population, and

genotypes are collected using sound tech-

niques, the statistical analysis of genetic

data can begin. The de facto analysis of

genome-wide association data is a series of

single-locus statistic tests, examining each

SNP independently for association to the

phenotype. The statistical test conducted

depends on a variety of factors, but first

and foremost, statistical tests are different

for quantitative traits versus case/control

studies.

Quantitative traits are generally ana-

lyzed using generalized linear model (GLM)

approaches, most commonly the Analysis

of Variance (ANOVA), which is similar to

linear regression with a categorical pre-

dictor variable, in this case genotype

classes. The null hypothesis of an ANOVA

using a single SNP is that there is no

difference between the trait means of any

genotype group. The assumptions of GLM

and ANOVA are 1) the trait is normally

distributed; 2) the trait variance within

each group is the same (the groups are

homoskedastic); 3) the groups are inde-

pendent.

Dichotomous case/control traits are

generally analyzed using either contingen-

cy table methods or logistic regression.

Contingency table tests examine and

measure the deviation from independence

that is expected under the null hypothesis

that there is no association between the

phenotype and genotype classes. The most

ubiquitous form of this test is the popular

chi-square test (and the related Fisher’s

exact test).

Logistic regression is an extension of

linear regression where the outcome of a

linear model is transformed using a

logistic function that predicts the proba-

bility of having case status given a

genotype class. Logistic regression is often

the preferred approach because it allows

for adjustment for clinical covariates (and

other factors), and can provide adjusted

odds ratios as a measure of effect size.

Logistic regression has been extensively

developed, and numerous diagnostic pro-

cedures are available to aid interpretation

of the model.

For both quantitative and dichotomous

trait analysis (regardless of the analysis

method), there are a variety of ways that

genotype data can be encoded or shaped

for association tests. The choice of data

encoding can have implications for the

statistical power of a test, as the degrees of

freedom for the test may change depend-

ing on the number of genotype-based

groups that are formed. Allelic association

tests examine the association between one

allele of the SNP and the phenotype.

Genotypic association tests examine the

association between genotypes (or geno-

type classes) and the phenotype. The

genotypes for a SNP can also be grouped

into genotype classes or models, such as

dominant, recessive, multiplicative, or

additive models [29].

Each model makes different assump-

tions about the genetic effect in the data –

assuming two alleles for a SNP, A and a,

a dominant model (for A) assumes that

having one or more copies of the A allele

increases risk compared to a (i.e. Aa or

AA genotypes have higher risk). The

recessive model (for A) assumes that two

copies of the A allele are required to alter

risk, so individuals with the AA genotype

are compared to individuals with Aa and

aa genotypes. The multiplicative model

(for A) assumes that if there is 36 risk for

having a single A allele, there is a 96 risk

for having two copies of the A allele: in

this case if the risk for Aa is k, the risk for

AA is k2. The additive model (for A)

assumes that there is a uniform, linear

increase in risk for each copy of the A
allele, so if the risk is 36 for Aa, there is a

66 risk for AA - in this case the risk for

Aa is k and the risk for AA is 2k. A

common practice for GWAS is to exam-

ine additive models only, as the additive

model has reasonable power to detect

both additive and dominant effects, but it

is important to note that an additive

model may be underpowered to detect

some recessive effects [30]. Rather than
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choosing one model a priori, some studies

evaluate multiple genetic models coupled

with an appropriate correction for multi-

ple testing.

6.2 Covariate Adjustment and
Population Stratification

In addition to selecting an encoding

scheme, statistical tests should be adjusted

for factors that are known to influence the

trait, such as sex, age, study site, and

known clinical covariates. Covariate ad-

justment reduces spurious associations due

to sampling artifacts or biases in study

design, but adjustment comes at the price

of using additional degrees of freedom

which may impact statistical power. One

of the more important covariates to

consider in genetic analysis is a measure

of population substructure. There are

often known differences in phenotype

prevalence due to ethnicity, and allele

frequencies are highly variable across

human subpopulations, meaning that in

a sample with multiple ethnicities, ethnic-

specific SNPs will likely be associated to

the trait due to population stratification.

To prevent population stratification, the

ancestry of each sample in the dataset is

measured using STRUCTURE [31] or

EIGENSTRAT [32] methods that com-

pare genome-wide allele frequencies to

those of HapMap ethnic groups. The

results of these analyses can be used to

either exclude samples with similarity to a

non-target population, or they can be used

as a covariate in association analysis.

EIGENSTRAT is commonly used in this

circumstance, where principle component

analysis is used to generate principle

component values that could be described

as an ‘‘ethnicity score’’. When used as

covariates, these scores adjust for minute

ancestry effects in the data.

6.3 Corrections for Multiple Testing
A p-value, which is the probability of

seeing a test statistic equal to or greater

than the observed test statistic if the null

hypothesis is true, is generated for each

statistical test. This effectively means that

lower p-values indicate that if there is no

association, the chance of seeing this result

is extremely small.

Statistical tests are generally called

significant and the null hypothesis is

rejected if the p-value falls below a

predefined alpha value, which is nearly

always set to 0.05. This means that 5% of

the time, the null hypothesis is rejected

when in fact it is true and we detect a false

positive. This probability is relative to a

single statistical test; in the case of

GWAS, hundreds of thousands to mil-

lions of tests are conducted, each one with

its own false positive probability. The

cumulative likelihood of finding one or

more false positives over the entire

GWAS analysis is therefore much higher.

For a somewhat morbid analogy, consider

the probability of having a car accident. If

you drive your car today, the probability

of having an accident is fairly low.

However if you drive every day for the

next five years, the probability of you

having one or more accidents over that

time is much higher than the probability

of having one today.

One of the simplest approaches to

correct for multiple testing is the Bonfer-

roni correction. The Bonferroni correction

adjusts the alpha value from a= 0.05 to

a= (0.05/k) where k is the number of

statistical tests conducted. For a typical

GWAS using 500,000 SNPs, statistical

significance of a SNP association would

be set at 1e-7. This correction is the most

conservative, as it assumes that each

association test of the 500,000 is indepen-

dent of all other tests – an assumption that

is generally untrue due to linkage disequi-

librium among GWAS markers.

An alternative to adjusting the false

positive rate (alpha) is to determine the

false discovery rate (FDR). The false

discovery rate is an estimate of the

proportion of significant results (usually

at alpha = 0.05) that are false positives.

Under the null hypothesis that there are

no true associations in a GWAS dataset, p-

values for association tests would follow a

uniform distribution (evenly distributed

from 0 to 1). Originally developed by

Benjamini and Hochberg, FDR proce-

dures essentially correct for this number of

expected false discoveries, providing an

estimate of the number of true results

among those called significant [33]. These

techniques have been widely applied to

GWAS and extended in a variety of ways

[34].

Permutation testing is another approach

for establishing significance in GWAS.

While somewhat computationally inten-

sive, permutation testing is a straightfor-

ward way to generate the empirical

distribution of test statistics for a given

dataset when the null hypothesis is true.

This is achieved by randomly reassigning

the phenotypes of each individual to

another individual in the dataset, effec-

tively breaking the genotype-phenotype

relationship of the dataset. Each random

reassignment of the data represents one

possible sampling of individuals under the

null hypothesis, and this process is repeat-

ed a predefined number of times N to

generate an empirical distribution with

resolution N, so a permutation procedure

with an N of 1000 gives an empirical p-

value within 1/1000th of a decimal place.

Several software packages have been

developed to perform permutation testing

for GWAS studies, including the popular

PLINK software [35], PRESTO [36], and

PERMORY [37].

Another commonly used approach is to

rely on the concept of genome-wide signifi-

cance. Based on the distribution of LD in

the genome for a specific population,

there are an ‘‘effective’’ number of

independent genomic regions, and thus

an effective number of statistical tests that

should be corrected for. For European-

descent populations, this threshold has

been estimated at 7.2e-8 [38]. This

reasonable approach should be used with

caution, however, as the only scenario

where this correction is appropriate is

when hypotheses are tested on the

genome scale. Candidate gene studies or

replication studies with a focused hypoth-

esis do not require correction to this level,

as the number of effective, independent

statistical tests is much, much lower than

what is assumed for genome-wide signif-

icance.

6.4 Multi-Locus Analysis
In addition to single-locus analyses,

genome-wide association studies provide

an enormous opportunity to examine

interactions among genetic variants

throughout the genome. Multi-locus analy-

sis, however, is not nearly as straightfor-

ward as conducting single-locus tests, and

presents numerous computational, statisti-

cal, and logistical challenges [39].

Because most GWAS genotype be-

tween 500,000 and one million SNPs,

examining all pair-wise combinations of

SNPs is a computationally intractable

approach, even for highly efficient algo-

rithms. One approach to this issue is to

reduce or filter the set of genotyped SNPs,

eliminating redundant information. A

simple and common way to filter SNPs

is to select a set of results from a single-

SNP analysis based on an arbitrary

significance threshold and exhaustively

evaluate interactions in that subset. This

can be perilous, however, as selecting

SNPs to analyze based on main effects

will prevent certain multi-locus models

from being detected – so called ‘‘purely

epistatic’’ models with statistically unde-

tectable marginal effects. With these

models, a large component of the herita-

bility is concentrated in the interaction

rather than in the main effects. In other

words, a specific combination of markers
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(and only the combination of markers)

incurs a significant change in disease risk.

The benefits of this analysis are that it

performs an unbiased analysis for inter-

actions within the selected set of SNPs. It

is also far more computationally and

statistically tractable than analyzing all

possible combinations of markers.

Another strategy is to restrict examina-

tion of SNP combinations to those that

fall within an established biological con-

text, such as a biochemical pathway or a

protein family. As these techniques rely

on electronic repositories of structured

biomedical knowledge, they generally

couple a bioinformatics engine that gen-

erates SNP-SNP combinations with a

statistical method that evaluates combi-

nations in the GWAS dataset. For exam-

ple, the Biofilter approach uses a variety

of public data sources with logistic

regression and multifactor dimensionality

reduction methods [40,41]. Similarly,

INTERSNP uses logistic regression, log-

linear, and contingency table approaches

to assess SNP-SNP interaction models

[42].

7. Replication and Meta-
Analysis
7.1 Statistical Replication

The gold standard for validation of any

genetic study is replication in an additional

independent sample. That said, there are a

variety of criteria involved in defining

‘‘replication’’ of a GWAS result. This was

the subject of an NHGRI working group,

which outlined several criteria for estab-

lishing a positive replication [43]. These

criteria are discussed in the following

paragraphs.

Replication studies should have suffi-

cient sample size to detect the effect of the

susceptibility allele. Often, the effects

identified in an initial GWAS suffer from

winner’s curse, where the detected effect is

likely stronger in the GWAS sample than

in the general population [44]. This means

that replication samples should ideally be

larger to account for the over-estimation of

effect size. With replication, it is important

for the study to be well-powered to identify

spuriously associated SNPs where the null

hypothesis is most likely true – in other

words, to confidently call the initial

GWAS result a false-positive.

Replication studies should be conducted

in an independent dataset drawn from the

same population as the GWAS, in an

attempt to confirm the effect in the GWAS

target population. Once an effect is

confirmed in the target population, other

populations may be sampled to determine

if the SNP has an ethnic-specific effect.

Replication of a significant result in an

additional population is sometimes re-

ferred to as generalization, meaning the

genetic effect is of general relevance to

multiple human populations.

Identical phenotype criteria should be

used in both GWAS and replication

studies. Replication of a GWAS result

should be thought of as the replication of a

specific statistical model – a given SNP

predicts a specific phenotype effect. Using

even slightly different phenotype defini-

tions between GWAS and replication

studies can cloud the interpretation of

the final result.

A similar effect should be seen in the

replication set from the same SNP, or a

SNP in high LD with the GWAS-identi-

fied SNP. Because GWAS typically use

SNPs that are markers that were chosen

based on LD patterns, it is difficult to say

what SNP within the larger genomic

region is mechanistically influencing dis-

ease risk. With this in mind, the unit of

replication for a GWAS should be the

genomic region, and all SNPs in high LD are

potential replication candidates. However,

continuity of effect should be demonstrat-

ed across both studies, with the magnitude

and direction of effect being similar for the

genomic region in both datasets. If SNPs

in high LD are used to demonstrate the

effect in replication, the direction of effect

must be determined using a reference

panel to determine two-SNP haplotype

frequencies. For example, if allele A is

associated in the GWAS with an odds

ratio of 1.5, and allele T of a nearby SNP

is associated in the replication set with an

odds ratio of 1.46, it must be demonstrated

that allele A and allele T carry effects in

the same direction. The most straightfor-

ward way to assess this is to examine a

reference panel, such as the HapMap

data, for a relevant population. If this

panel shows that allele A from SNP 1 and

allele T from SNP 2 form a two-marker

haplotype in 90% of the sample, then this

is a reasonable assumption. If however the

panel shows that allele A from SNP 1 and

allele A from SNP 2 form the predomi-

nant two-marker haplotype, the effect has

probably flipped in the replication set.

Mapping the effect through the haplotype

would be equivalent to observing an odds

ratio of 1.5 in the GWAS and 0.685 in the

replication set.

In brief, the general strategy for a

replication study is to repeat the ascertain-

ment and design of the GWAS as closely as

possible, but examine only specific genetic

effects found significant in the GWAS.

Effects that are consistent across the two

studies can be labeled replicated effects.

7.2 Meta-Analysis of Multiple
Analysis Results

The results of multiple GWAS studies

can be pooled together to perform a meta-

analysis. Meta-analysis techniques were

originally developed to examine and refine

significance and effect size estimates from

multiple studies examining the same hypothesis

in the published literature. With the

development of large academic consortia,

meta-analysis approaches allow the syn-

thesis of results from multiple studies

without requiring the transfer of protected

genotype or clinical information to parties

who were not part of the original study

approval – only statistical results from a

study need be transferred. For example, a

recent publication examining lipid profiles

was based on a meta-analysis of 46 studies

[21]. A study of this magnitude would be

logistically difficult (if not impossible)

without meta-analysis. Several software

packages are available to facilitate meta-

analysis, including STATA products and

METAL [45,46].

A fundamental principle in meta-anal-

ysis is that all studies included examined

the same hypothesis. As such, the general

design of each included study should be

similar, and the study-level SNP analysis

should follow near-identical procedures

across all studies (see Zeggini and Ioanni-

dis [47] for an excellent review). Quality

control procedures that determine which

SNPs are included from each site should

be standardized, along with any covariate

adjustments, and the measurement of

clinical covariates and phenotypes should

be consistent across multiple sites. The

sample sets across all studies should be

independent – an assumption that should

always be examined as investigators often

contribute the same samples to multiple

studies. Also, an extremely important and

somewhat bothersome logistical matter is

ensuring that all studies report results

relative to a common genomic build and

reference allele. If one study reports its

results relative to allele A and another

relative to allele B, the meta-analysis result

for this SNP may be non-significant

because the effects of the two studies

nullify each other.

With all of these factors to consider, it is

rare to find multiple studies that match

perfectly on all criteria. Therefore, study

heterogeneity is often statistically quantified

in a meta-analysis to determine the degree

to which studies differ. The most popular

measures of study heterogeneity are the Q

statistic and the I2 index [48], with the I2

index favored in more recent studies.

Coefficients resulting from a meta-analysis

have variability (or error) associated with
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them, and the I2 index represents the

approximate proportion of this variability

that can be attributed to heterogeneity

between studies [49]. I2 values fall into low

(,25), medium (.25 and ,75), and high

(.75) heterogeneity, and have been pro-

posed as a way to identify studies that

should perhaps be removed from a meta-

analysis. It is important to note that these

statistics should be used as a guide to

identifying studies that perhaps examine a

different underlying hypothesis than others

in the meta-analysis, much like outlier

analysis is used to identify unduly influential

points. Just as with outliers, however, a

study should only be excluded if there is an

obvious reason to do so based on the

parameters of the study – not simply

because a statistic indicates that this study

increases heterogeneity. Otherwise, agnos-

tic statistical procedures designed to reduce

meta-analysis heterogeneity will increase

false discoveries.

7.3 Data Imputation
To conduct a meta-analysis properly, the

effect of the same allele across multiple distinct

studies must be assessed. This can prove

difficult if different studies use different

genotyping platforms (which use different

SNP marker sets). As this is often the case,

GWAS datasets can be imputed to generate

results for a common set of SNPs across all

studies. Genotype imputation exploits

known LD patterns and haplotype frequen-

cies from the HapMap or 1000 Genomes

project to estimate genotypes for SNPs not

directly genotyped in the study [50].

The concept is similar in principle to

haplotype phasing algorithms, where the con-

tiguous set of alleles lying on a specific

chromosome is estimated. Genotype impu-

tation methods extend this idea to human

populations. First, a collection of shared

haplotypes within the study sample is

computed to estimate haplotype frequencies

among the genotyped SNPs. Phased haplo-

types from the study sample are compared

to reference haplotypes from a panel of

much more dense SNPs, such as the

HapMap data. The matched reference

haplotypes contain genotypes for surround-

ing markers that were not genotyped in the

study sample. Because the study sample

haplotypes may match multiple reference

haplotypes, surrounding genotypes may be

given a score or probability of a match based

on the haplotype overlap. For example,

rather than assign an imputed SNP a single

allele A, the probability of possible alleles is

reported (0.85 A, 0.12 C, 0.03 T ) based on

haplotype frequencies. This information can

be used in the analysis of imputed data to

take into account uncertainty in the geno-

type estimation process, typically using

Bayesian analysis approaches [51]. Popular

algorithms for genotype imputation include

BimBam [52], IMPUTE [53], MaCH [54],

and Beagle [55].

Much like conducting a meta-analysis,

genotype imputation must be conducted

with great care. The reference panel (i.e.

the 1000 Genomes data or the HapMap

project) must contain haplotypes drawn

from the same population as the study

sample in order to facilitate a proper

haplotype match. If a study was conducted

using individuals of Asian descent, but only

European descent populations are repre-

sented in the reference panel, the genotype

imputation quality will be poor as there is a

lower probability of a haplotype match.

Also, the reference allele for each SNP must

be identical in both the study sample and

the reference panel. Finally, the analysis of

imputed genotypes should account for the

uncertainty in genotype state generated by

the imputation process.

8. The Future

Genome-wide association studies have

had a huge impact on the field of human

genetics. They have identified new genet-

ic risk factors for many common human

diseases and have forced the genetics

community to think on a genome-wide

scale. On the horizon is whole-genome

sequencing. Within the next few years we

will see the arrival of cheap sequencing

technology that will replace one million

SNPs with the entire genomic sequence of

three billion nucleotides. Challenges asso-

ciated with data storage and manipula-

tion, quality control and data analysis will

be manifold more complex, thus chal-

lenging computer science and bioinfor-

matics infrastructure and expertise. Merg-

ing sequencing data with that from other

high-throughput technology for measur-

ing the transcriptome, the proteome, the

environment and phenotypes such as the

massive amounts of data that come from

neuroimaging will only serve to compli-

cate our goal to understand the genotype-

phenotype relationship for the purpose of

improving healthcare. Integrating these

many levels of complex biomedical data

along with their coupling with experi-

mental systems is the future of human

genetics.

9. Exercises

1. True or False: Common diseases, such

as type II diabetes and lung cancer, are

likely caused by mutations to a single

gene. Explain your answer.

2. Will the genotyping platforms designed

for GWAS of European Descent pop-

ulations be of equal utility in African

Descent populations? Why or why not?

3. When conducting a genetic study, what

additional factors should be measured

and adjusted for in the statistical

analysis?

4. True or False: SNPs that are associated

to disease using GWAS design should

be immediately considered for molec-

ular studies. Explain your answer.

Answers to the Exercises can be found

in Text S1.

Supporting Information
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